Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: X67583

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Third Semester

Electrical and Electronics Engineering EE1201A – ELECTROMAGNETIC THEORY (Regulations 2008)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART – A (10×2=20 Marks)

- 1. Mention the sources of electromagnetic fields.
- 2. State the physical significance of curl of a vector field.
- 3. Determine the electric field intensity at any point between two infinite sheets of charge densities $+ \rho sC/m^2$.
- 4. Distinguish between dielectric constant and dielectric strength.
- 5. State Biot-Savart law.
- 6. What is Magnetic Flux density?
- 7. What type of voltage is induced in a loop, which is rotating about the y-axis in a magnetic field of flux density $\vec{B} = B_0 \, \text{Sin}(\omega t) \hat{i}$ Tesla?
- 8. Write the relation showing, the energy required to establish a magnetic field by a quasi stationary current system.
- 9. State the Poynting theorem.
- 10. Mention any two properties of uniform plane wave.

PART - B $(5\times16=80 \text{ Marks})$ 11. a) i) Describe how the differential elements in length, area and volume are defined in various orthogonal coordinate systems. (12)ii) State the fundamental properties of the gradient of a scalar field. **(4)** (OR) b) i) Describe the effects of electromagnetic fields. **(6)** ii) Explain the curl of a vector field and Stokes's theorem. (10)12. a) i) Determine the electric field intensity \vec{E} at a point '2a' along the axis perpendicular to the plane of a circular wire charged uniformly at $\rho_1\ \text{C/m}$ which has a radius 'a'. **(6)** ii) Derive the electrostatic boundary conditions at the interface between two dielectrics. (10)(OR) b) i) Determine the electrostatic potential. 1) Inside and outside a spherical shell of radius R. The shell contains a total charge Q uniformly distributed over the surface. 2) Inside and outside a spherical shell of radius R₁. The shell contains a total charge Q_t, uniformly distributed throughout the volume. Plot the variation of potential with respect to the radial distance in both (4+8)cases. ii) An air condenser consisting of two parallel square plates of 50 cm side is charged to a potential difference of 250 V. When the plates are 1 mm apart. Find the work done in separating the plates from 1 mm to 3 mm. Assume perfect insulation. **(4)** 13. a) i) Discuss about the magnetic field in multiple media. **(8)** ii) Discuss about magnetic materials. **(8)** (OR) b) i) Derive the Energy density of Inductance. **(8)** ii) Derive the Magnetic field due to circular loop. **(8)** 14. a) i) Explain briefly about 'Transformer and Motional EMFs'. **(6)**

ii) By applying field theory to a RLC parallel circuit excited by an alternating current source of 'I' ampere, show that $I = \frac{V}{R} + \frac{1}{L} \int V dt + C \frac{dV}{dt}$ Where, V = voltage across parallel combination, R = resistance of resistor, L = inductance of inductor, C = capacitance of capacitor. (10)

(OR)

	,	rite down and explain the Maxwell's equations in integral and differential orms for the following cases.	
	i)	General case	(3)
	ii)	Free space	(3)
	iii)	Harmonic variation	(4)
	iv)	Static case	(3)
	v)	Steady case.	(3)
15.	a) i)	Deduce the equation of the propagation of the plane electromagnetic waves in free space.	(8)
	ii)	An air line has characteristic impedance of 70 Ω and phase constant of 3 radians/m at 100 MHz. Calculate the inductance/meter and the capacitance/meter of the line. (OR)	(8)
	b) i)	Derive the Poynting theorem and give its significance.	(12)
	ii)	Describe briefly about Reflection coefficient and Transmission coefficient.	(4)